Role of Human Organic Cation Transporter 1 (hOCT1) Polymorphisms in Lamivudine (3TC) Uptake and Drug-Drug Interactions
نویسندگان
چکیده
Lamivudine (3TC), a drug used in the treatment of HIV infection, needs to cross the plasma membrane to exert its therapeutic action. Human Organic cation transporter 1 (hOCT1), encoded by the SLC22A1 gene, is the transporter responsible for its uptake into target cells. As SLC22A1 is a highly polymorphic gene, the aim of this study was to determine how SNPs in the OCT1-encoding gene affected 3TC internalization and its interaction with other co-administered drugs. HEK293 cells stably transfected with either the wild type form or the polymorphic variants of hOCT1 were used to perform kinetic and drug-drug interaction studies. Protein co-immunoprecipitation was used to assess the impact of selected polymorphic cysteines on the oligomerization of the transporter. Results showed that 3TC transport efficiency was reduced in all polymorphic variants tested (R61C, C88R, S189L, M420del, and G465R). This was not caused by lack of oligomerization in case of variants located at the transporter extracellular loop (R61C and C88R). Drug-drug interaction measurements showed that co-administered drugs [abacavir (ABC), zidovudine (AZT), emtricitabine (FTC), tenofovir diproxil fumarate (TDF), efavirenz (EFV) and raltegravir (RAL)], differently inhibited 3TC uptake depending upon the polymorphic variant analyzed. These data highlight the need for accurate analysis of drug transporter polymorphic variants of clinical relevance, because polymorphisms can impact on substrate (3TC) translocation but even more importantly they can differentially affect drug-drug interactions at the transporter level.
منابع مشابه
Interactions of HIV protease inhibitors with a human organic cation transporter in a mammalian expression system.
Recently, we cloned a human organic cation transporter, hOCT1, which is expressed primarily in the liver. hOCT1 plays an important role in the cellular uptake and elimination of various xenobiotics including therapeutically important drugs. HIV protease inhibitors are a new class of therapeutic agents. The purpose of this study was to elucidate the interactions of HIV protease inhibitors with h...
متن کاملDecreased function of genetic variants, Pro283Leu and Arg287Gly, in human organic cation transporter hOCT1.
We have evaluated the functional consequences of genetic variations in human organic cation transporter hOCT1 (SLC22A1). Three coding single nucleotide polymorphisms (cSNPs) resulted in the amino acid changes Pro283Leu, Arg287Gly and Pro341Leu were assessed. Uptake experiments with transient expression system using HEK293 cells revealed that the variants Pro283Leu and Arg287Gly had completely d...
متن کاملInteraction of Ethambutol with human organic cation transporters of the SLC22 family indicates potential for drug-drug interactions during antituberculosis therapy.
According to the 2012 WHO global tuberculosis (TB) report (http://apps.who.int/iris/bitstream/10665/75938/1/9789241564502_eng.pdf), the death rate for tuberculosis was over 1.4 million patients in 2011, with ∼9 million new cases diagnosed. Moreover, the frequency of comorbidity with human immunodeficiency virus (HIV) and with diabetes is on the rise, increasing the risk of these patients for ex...
متن کاملCloning and functional expression of a human liver organic cation transporter.
Polyspecific organic cation transporters in the liver mediate the elimination of a wide array of endogenous amines and xenobiotics. In contrast to our understanding of the mechanisms of organic cation transport in rat liver, little is known about the mechanisms of organic cation transport in the human liver. We report the cloning, sequencing, and functional characterization of the first human p...
متن کاملHuman organic anion transporters and human organic cation transporters mediate renal antiviral transport.
Renal excretion is an important elimination pathway for antiviral agents, such as acyclovir (ACV), ganciclovir (GCV), and zidovudine (AZT). The purpose of this study was to elucidate the molecular mechanisms of renal ACV, GCV, and AZT transport using cells stably expressing human organic anion transporter 1 (hOAT1), hOAT2, hOAT3, and hOAT4, and human organic cation transporter 1 (hOCT1) and hOC...
متن کامل